l.p.p. rings which are *-semisimple

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filtrations in Semisimple Rings

In this paper, we describe the maximal bounded Z-filtrations of Artinian semisimple rings. These turn out to be the filtrations associated to finite Z-gradings. We also consider simple Artinian rings with involution, in characteristic 6= 2, and we determine those bounded Z-filtrations that are maximal subject to being stable under the action of the involution. Finally, we briefly discuss the an...

متن کامل

Semisimple Strongly Graded Rings

Let G be a finite group and R a strongly G-graded ring. The question of when R is semisimple (meaning in this paper semisimple artinian) has been studied by several authors. The most classical result is Maschke’s Theorem for group rings. For crossed products over fields there is a satisfactory answer given by Aljadeff and Robinson [3]. Another partial answer for skew group rings was given by Al...

متن کامل

Quantised coordinate rings of semisimple groups are unique factorisation domains

We show that the quantum coordinate ring of a semisimple group is a unique factorisation domain in the sense of Chatters and Jordan in the case where the deformation parameter q is a transcendental element.

متن کامل

On p.p.-rings which are reduced

Throughout the paper, all rings are associative rings with identity 1. The set of all idempotents of a ring R is denoted by E(R). Also, for a subset X ⊆ R, we denote the right [resp., left] annihilator of X by r(X) [resp., (X)]. We call a ring R a left p.p.-ring [3], in brevity, an l.p.p.-ring, if every principal left ideal of R, regarded as a left R-module, is projective. Dually, we may define...

متن کامل

Rings in which elements are the sum of an‎ ‎idempotent and a regular element

Let R be an associative ring with unity. An element a in R is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von Neumann) element in R. If every element of R is r-clean, then R is called an r-clean ring. In this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. Further we prove that if 0 and 1 are the only idempotents...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematical Forum

سال: 2007

ISSN: 1314-7536

DOI: 10.12988/imf.2007.07251